
040b747970656473747265616d8103a2840163c48403737373811212810f0f810f0f84012584067f411b312d34Releas
e 3.3/3.2hp/PDO2.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

3.3, 3.2hp, PDO 2.0 Release Notes:
C Compiler

Notes Specific to Release 3.3/3.2hp
In this release, the compiler is based on the GNU C compiler version
2.5.8.   

This is also the compiler for NeXTSTEP/hppa 3.2. Please contack
Kresten_Thorup@NeXT.COM if you have eny problems with it, and the
problems are not mentioned in this note.

Recompilation

The following changes in this version of the GNU C compiler requires
you to recompile some existing code.

· C++ name mangling. The method of ``mangling'' C++ function
names has been changed.    So you must recompile all C++
programs completely when you start using NeXTSTEP 3.3.    libg++
is updated to use the new mangling.

· Struct arguments on hppa. A bug fix in passing of structure
arguments for the hppa architecture makes code compiled with the
GNU C compiler incompatible with code compiled with earlier
versions (if it passes struct arguments of    33 to 64 bits,
interspersed with other types of arguments). This is a very rare
problem, since the calling conventions are really changed only
when certain conditions are met, so most code will work withou
recompilation.

Features in test bed

The following are features which have just been introduced, and are
thus not enabled as default:

· Dylib codegen; -k. (m68k and i386) Generate code for the new
dynamic shared library scheme.      Eventually, this flag will be
named `-NEXTSTEP-deployment- target 3.3'.     

New Features

The following new features have been added to the GNU C Compiler
for Release 3.3.      Using some of them may disable you to run the
resulting application on pre-3.3 NeXTSTEP.      The details of this should
be described elsewhere...

· IEEE Compliant Floating Point. Parts of the backend for the
m68k and i386 compilers have been rewritten in order to make

sure that the generated code is fully IEEE compliant.    Some
programmers may have been using -ffloat-store to obtain this, but
that option is no longer needed.      To enable this feature, use the -
ffppc flag to the compiler in stead of -ffloat-store.    -fppc will
eventaully be enabled as default, so better test it now before that
happens.

This feature is incompatible with pre-3.3 NeXTSTEP threads, and
should, once it becomes the default behavior, be turned off using -
fno-fppc (and replaced by -ffloat-store) when building binaries using
threads to be run on any pre-3.3 systems.     

· C++ System Header Files. A new pragma `#pragma cplusplus'   
is used to resolve the problem of having C++ system header files.   
All system header files are by default included in implicit `extern
"C"'.      When `#pragma cplusplus' appears in a header file, the rest
of that file is embeded in an implicit `extern "C++"' block.   
Alternatively, if either of g++ or c++ appears in the full path name to
a headerfile (ignoring case), it is also considered C++.   

 An error is reported if this pragma appears inside an explicit
`extern "C" {...}'.   

· Long double on i386. The GNU C compiler now supports `long
double' meaningfully on the i386 (96-bit floating point).   

· Nested functions. Pascal-style nested functions are now
supported in C.    This have been in the GNU C compiler for a while,
but is now also supported for the NeXTSTEP Operating System.
Using this will disable you to run the resulting binary on pre-3.3

systems.

· Array and structure initializers.    The C syntax for specifying
which structure field comes next in an initializer is now
`.field_name='.    The corresponding syntax for array initializers is
now `[index]='.    For example,

char whitespace[256] = { [' ']=1, ['\t']=1, ['\n']=1 };
NXRect point = {.origin={0,0}, .size={2,3}};

This was changed to accord with the syntax proposed by the
Numerical C Extensions Group (NCEG).      C++ does not support
this kind of initializers.

· Accessing instance variables in class methods. It used to be
common programming style in Objective-C to assign self, and then
access instance variables as in the context of an instance method.   
To discurage this anachroistic use, a warning will be issued.

· C++ `smart pointers' and Objective-C. The Objective-C++
compiler has been changed to recognize type conversion operators
for the receiver in a message expression.    This allows you to
implement so called `smart pointers' to Objective-C objects.   
However, this conversion is a bit subtle for various implementation
reasons.    You should avoid having multiple type conversion
operators (from the same class) to different pointer types.    This
may confuse the machinery to choose the wrong type.    If however,
you need more than, you must make an `operator id' which will

then be chosen over any Objective-C class pointer types. For
example:

@interface Foo { id a; } ... @end

class ptrFoo {
 Foo* value;
 public:
 operator Foo*();
};

foo (ptrFoo xx) {
 int i = [xx doSomething]; // calls operator Foo*

 }

Here, the he compiler will recognize xx as statically typed to `Foo*'
in the message expression.    However, if `class ptrFoo' had
implemented other `operator X*' functions, you would have to
implement an `operator id' since otherwise the compiler would not
know which conversion to look for.      Actually, the compiler prefers
`operator id' at all time, if it can find it.

· Unaligned text. (i386 only) Using the new flag -munaligned-text
all alignment for instructions will be turned off.    Ocasionally this may
be interesting if the code size is significant.   

Changes

· Implicit cast from int to enums.      The compiler used to

implicitly allow casts from int to any enum type.      According to
ANSI C++ and ANSI C, this is not correct behavior, so a warning will
be issued when this is needed.      It is a problem because you
cannot be sure the integer value lies in the range of the enum.   

· Assignment used as conditional.  With the -Wall flag turned on,
the compiler will issue a warning for assignments used as
conditionals in if, for, and while statements.    For example the code:

 if (i = foo()) { ... }

Will generate a warning suggesting an extra set of parenthesis
around the assignment, like:

if ((i = foo())) { ... }

The idea is that this warning will catch situations where you really
meant test for equivalence == and not assignment =.     

Note: There has been much discussion and many comments on this
warning.    Many developers from NeXT have mailed me or come
intoo my office complaining about it, or asking if it was going to
stay.    I have decided that it will stay in the compiler anyway,
because several people have come back to me and changed their
mind.    The first time it actually catches a real bug, you will be glad
to have it.

· Pointers to members.      The C++ compiler used to allow the case
in the following code which is now marked as an error.    The
compiler will issue and error message if those occur.

class X { public: void f(int); };
class Y : public X { public: void f(int); };

g (Y* y, X* x)
{

void (X::*xmp)(int) = &X::f;
void (Y::*ymp)(int) = &Y::f;

(y->*xmp)(4); // ok
(x->*ymp)(5); // error (1)
ymp = &Y::f; // ok
xmp = &Y::f; // error (2)

}

Statement (1) is an error because, intuitively you cannot be sure
that an X* ``responds to'' a Y member pointer.    The assignment in
(2) is an error, because in general you cannot be sure that some
member of a derived class (in this case Y::f) is available in any of
it's base classes.    Even though ymp is initialized to an X member
pointer, it cannot safely be applied to an X*.      This was reported as
a problem by Mike Monegan.

· Implicit cast from void* to object pointer.     The C++ compiler
used to implicitly allow casts from void* to any C++ Object pointer
type.      According to ANSI C++, this is not correct behavior, so a
warning will be issued when this is needed.    This was reported as a
problem by Mike Monegan.

· Incrementing enums.     The C++ compiler used to allow
increment and decrement operations on enums.      According to

ANSI C++, this is not correct behavior, so a warning will be issued
for this.      It is a problem because you cannot be sure the resulting
integer value lies in the range of the enum.    This was reported as a
problem by Mike Monegan.

· volatile and const declarations must match definitions.      The
C compiler used to allow a declaration and it's definition to mis-
match on volatile and const-ness.    This is no longer allowed, and
the compiler will issue an error when such appears.

· -Wno-format. This warning option used to be called -Wnoformat
(without the dash), but has been renamed to be consistent with the
rest of the compiler flags.    On the 3.2hp release, both forms are
accepted.

· -fkeep-inline-functions. Preious versions of the compiler would
eliminate unused static inline functions.    Using this flag, you can
make sure they get compiled into the image.

 · More Strict Objective-C Syntax Checking. The compiler now is
more strict with syntax checking, so you are not allowed to nest
@interface and @implementation blocks.    This is done to be able to
check that the user allways remembers closing @end.

· C++ multiple virtual inheritance. Improvements have been
made to the C++ compiler so that the dispatch of virtual functions
is right most of the times except for the following case.

class A { void f(); }

class B : public virtual A { virtual void f(); }
class C : public virtual A { virtual void f(); }
class D : public B, public C { virtual void f(); }
class E : public D { virtual void f(); }

Consider the following calls,

 foo() {
E* e = new E;
B* b = e;
C* c = e;
D* d = e;

 c->f(); // Wrong - calls D::f()
 b->f(); // Right - calls E::f()
 d->f(); // Right - calls E::f()
}

However, if the above hierarchy is modified such that the non-
virtual function f in A is made virtual, the dispatch works correctly.
The workaround is therefore to make f virtual through out the
hierarchy.

class A { virtual void f(); }
class B : public virtual A { virtual void f(); }
class C : public virtual A { virtual void f(); }
class D : public B, public C { virtual void f(); }
class E : public D { virtual void f(); }

In any event, the compiler now warns if there is a posibility that
wrong code is being generated:

warning: method `A::f()' redeclared as `virtual B::f()'

This warning is issued whenever a non-virtual method is redeclared
in a subclass as virtual.

Known Bugs and Limitations

The following bugs or limitations are worth noting    for the GNU C and
C++ Compilers for Release 3.3, since they were not there for earlier
releases.

· Constant pointers (40775). The C++ compiler does not handle
const pointers, i.e. `*const' correctly.      Occationally, this may cause
an internal compiler error.    Since this is only an optimization issue,
this can be replaced by simply `*'.

· Conditional expressions (39034). The C++ compiler does not
handle conditional expressions yielding an object or struct value
correctly.    Occationally, this may cause an internal compiler error.    To
fix it, just change the code to not use conditional expressions.

· Constant expressions (no bug number). Some expression,
such as the difference between the address of any two symbols are
not properly recognized by the compiler as valid initializer values.   
There is currently no workaround for that.    This is actually not a bug
in ANSI-C sense (just a limitation), because the ANSI-C standard does
not specify any behavior for this.

· Complex numbers (40546). The GNU compiler is documented
as supporting complex numbers.    This part of the compiler is
untested, and have been found to be errerous in some cases.    It is
not recommended that this is being used.

· Long doubles (41950). Using immediate long doubles
sometimes doesn't work.    Using the form 23450.0L which is used to
write long doubles immediate values may cause the compiler to
report an internal error.

